## Synthesis of 2-CF<sub>3</sub>-Tetrahydroquinoline and Quinoline Derivatives from **CF<sub>3</sub>-N-Aryl-aldimine**

Benoît Crousse,\* Jean-Pierre Bégué, and Danièle Bonnet-Delpon

Biocis UPRES A CNRS 8076. Centre d'Etudes Pharmaceutiques, Rue J.B. Clément, 92296 Châtenay-Malabry, France

benoit.crousse@cep.u-psud.fr

Received December 7, 1999

## Introduction

Various tetrahydroquinoline derivatives bearing simple or complex substituents are used as pharmaceutical agents.<sup>1</sup> Besides pharmaceutical applications, tetrahydroquinoline derivatives are also useful as pesticides, antioxidants, and corrosion inhibitors.<sup>2</sup>

Among different ways for constructing tetrahydroquinolines, aza-Diels-Alder reaction between N-arylimines and dienophiles is an established route to these compounds.<sup>3</sup> However, this reaction requires a Lewis acid catalyst such as BF<sub>3</sub>·Et<sub>2</sub>O and lanthanide salts. It is usually limited to arylaldimines, and it is much less efficient with alkyl aldimines.<sup>4</sup> In fluorinated series, the only example of an aza-Diels-Alder reaction reported concerns a cationic dipolar reaction, where a preformed aryliminium salt is required.<sup>5</sup> Despite this, considering the extraordinary potential of fluoroalkyl-containing biologically relevant molecules,<sup>6</sup> we have studied the aza-Diels–Alder reaction with the (E)- $\alpha$ -CF<sub>3</sub>-N-aryl-aldimine

48, 15031-15070 and references therein.

(3) Weinreb, S. M. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Vol. 5, p 401. (b) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic: San Diego, 1987; Chapters 2 and 9. (c) Nomura, Y.; Kimura, M.; Takeuchi, Y.; Tomoda, S. *Chem. Lett.* 1978, 267–270. (d) Boger, D. L. Tetrahedron 1983, 39, 2869-2939. (e) Kametani, T.; Takeda, H.; Suzuki, Y.; Honda, T. Heterocycles 1984, 22, 275-276. (e) Kametani, T.; Takeda, H.; Suzuki, Y.; Kasai, H.; Honda, T. *Heterocycles* **1986**, *24*, 3385–3395. (f) Koichi, N.; Takanori, S. *Heterocycles* **1993**, 35, 1039-1053. (g) Borrione, E.; Lucchini, V.; Prato, M.; Scorrano, G.; Stivanello, M. J. Heterocycl. Chem. 1988, 25, 1831-1833. (h) Borrione, E.; Prato, M.; Scorrano, G.; Stivanello, M.; Lucchini, V.; Valle, G. J. Chem. Soc., Perkin Trans. 1 1989, 2245-2250. (i) Joh, T.; Hagihara, N. Tetrahedron Lett. 1967, 42, 4199-4200.

(4) Povarov, L. S. Russ. Chem. Rev., Engl. Transl. 1967, 36, 656-675.

 (6) Fuchigami, T.; Ichikawa, S. J. Org. Chem. 1994, 59, 607–615.
 (6) Organofluorine Compounds in Medicinal Chemistry and Biochemical Applications; Filler, R., Kobayashi, Y., Yagupolski, L., Eds.; Elsevier: Amsterdam, 1993. (b) *Biomedical Frontiers of Fluorine Chemistry*; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American Chemical Society: Washington, DC, 1996; p 228. (c) Edwards, P. N. Use of Fluorine in Chemotherapy. In *Organofluorine Chemistry*: *Principles and commercial Applications*, Banks, R. E., Tatlow, J. C., Eds.; Plenum Press: New York, 1994; pp 501–541.

Scheme 1 BF<sub>2</sub>-Et<sub>2</sub>O OR or Yb(OTf)<sub>3</sub> 1 3

1. We have already reported that 1 could react as heterodiene of vinyl enol ethers to give tetrahydroquinolines in the presence of Lewis acids (Scheme 1).<sup>7</sup> We then extended this reaction to other dienophiles to prepare different patterns of 2-CF<sub>3</sub>-tetrahydroquinolines. We report here full details of this study and the preparation of new functionalized 2-CF<sub>3</sub>-quinolines.

## **Results and Discussion**

Aza-Diels-Alder Reaction with Vinyl Enol Ethers. The imine **1** is prepared from trifluoroacetaldehyde and p-anisidine.<sup>8</sup> The aza-Diels-Alder reaction was first carried out between 1 and the vinyl ether 2a (Scheme 1, Table 1) under conditions of Povarov<sup>4</sup> (10 mol % of BF<sub>3</sub>· Et<sub>2</sub>O). When the reaction was performed in solvents such as dichloromethane, ether, or THF, the yield of the cycloadduct was low. However, when toluene was used as solvent at -78 °C, the tetrahydroquinoline **3a** was obtained in 56% yield with good regio- and stereoselectivities. In the crude product, only traces of the other stereoisomer could be detected. The *cis* configuration was determined by <sup>1</sup>H NMR; large coupling constants between H-4 and H-3ax (10.7 Hz) and H-2 and H-3ax (11.6 Hz) indicate their trans diaxial relationship and hence the *cis* relationship between OEt and CF<sub>3</sub> (Scheme 2).

The reaction was then extended to other enol ethers (Table 1). Under the same conditions, butyl enol ether **2b** exhibited a reactivity similar to that of **2a**. With cyclic enol ethers, cycloaddition was efficient; the reaction with the 2.3-dihydrofuran 2c afforded the tetrahydroquinoline 3c (84%) as a mixture of *cis* and *trans* isomers in a ratio of 90/10 (cis/trans), which were separated by SiO<sub>2</sub> column chromatography. Similar results were obtained with the 3,4-dihydro-2H-pyran 2d; however, 1 equiv of catalyst was required to obtain 86% of the tetrahydroquinoline 3d in a 64/36 ratio (cis/trans). Configurations were assigned by comparison of NMR data (coupling constants) with those of nonfluorinated parent compounds.<sup>9,10d</sup>

<sup>(1) (</sup>a) Johnson, J. V.; Rauckman, S.; Baccanari, P. D., Roth, B. J. Med. Chem. **1989**, *32*, 1942–1949. (b) Carling, R. W.; Leeson, P. D.; Moseley, A. M.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall G. R. *J. Med. Chem.* **1992**, *35*, 1942–1953. (c) Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson G.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall G. R.; Hoogsteen, K. *J. Med. Chem.* **1992**, *35*, 1954–1968. (d) Carling, R. W.; Leeson, P. D.; Moseley, A. M.; Smith, J. D.; Saywell, K.; Trickelbank, M. D.; Kemp, J. A.; Marshall, G. R.; Foster, A. C.; Grimwood, S. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 65–70. (2) Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**,

<sup>(7)</sup> Crousse, B.; Bégué, J. P.; Bonnet-Delpon, D. Tetrahedron Lett. **1998**, *39*, 5765-5768.

<sup>(8) (</sup>a) Guanti, G.; Banfi, L.; Narisano, E.; Scolastico, C.; Bosone, E. *Synthesis*, **1985**, 609–611. (b) The E configuration of **1** was determined by hetero-NOE experiments.

<sup>(9) (</sup>a) Kametani, T.; Furuyama, F.; Fukuoka, Y.; Takeda, H.; Suzuki, Y.; Honda, T. *J. Heterocycl. Chem.* **1986**, *23*, 185–187. (b) Kametani, T.; Takeda, H.; Suzuki, Y.; Honda, T. *Synth. Comm.* **1985**, *15*, 499–505. (c) Elslager, E. F.; Worth, D. F. *J. Heterocycl. Chem.* **1969**, 697–698. (d) Worth, D. F.; Perricone, S. C.; Elslager, E. F. *J. Heterocycl.* Chem. 1970, 1353-1356. (e) Gilchrist, T. L.; Stannard, A. M. Tetra*hedron Lett.* **1988**, *29*, 3585–3586. (10) (a) Makioka, Y.; Shindo, T.; Taniguchi, Y.; Takaki, K.; Fujiwara,

Y. Synthesis 1995, 801–804. (b) Kobayashi, S.; Ishitani, H.; Yagavana,
 S. Chem. Lett. 1995, 423–424. (c) Kobayashi, S.; Ishitani, H.; Nagayama,
 S. Synthesis 1995, 1195–1202. (d) Ma, Y.; Qian C.; Xie, M.;
 Sun, J. J. Org. Chem. 1999, 64, 6462–6467.

 Table 1. Syntheses of Tetrahydroquinoline Derivatives

 (10 mol % BF<sub>3</sub>·Et<sub>2</sub>O)

| Entry | 2              | t      | 3                                      | cis/trans | yield (%) <sup>a</sup> |
|-------|----------------|--------|----------------------------------------|-----------|------------------------|
| 1     | ∕∕OEt<br>2a    | 20 min | HN<br>OMe 3a                           | >98/2     | 56                     |
| 2     | ∕∕OBu<br>2b    | 30 min | CF <sub>3</sub><br>HN<br>OBu<br>OMe 3b | >98/2     | 60                     |
| 3     | <i>∏</i><br>2c | 70 min | HN<br>OMe 3c                           | 90/10     | 84                     |
| 4     | C<br>O<br>2d   | 2h     | HN<br>OMe 3d                           | 64/36     | 86 <sup>6</sup>        |

<sup>a</sup> Isolated yield. <sup>b</sup> 1 equiv of Lewis Acid was required.

Scheme 2



H2ax-H3ax = 11.6 Hz

H3ax-H4ax = 10.7 Hz

Lanthanide triflates have been used to activate imines<sup>10</sup> and promote Diels–Alder reactions. We explored the reaction under 5 mol % of Yb(OTf)<sub>3</sub> in acetonitrile at room temperature. The results were roughly similar to those obtained with BF<sub>3</sub>·Et<sub>2</sub>O (Table 2). Tetrahydroquinolines **3a**,**b** were isolated in good yield and with a good diastereoselectivity (*cis* configuration). Lack of stereoselectivity was observed with **2c** and **2d**; tetrahydroquinolines **3c**,**d** were obtained as a 70/30 mixture of *cis* and *trans* isomers.

If we compare these results to those described with nonfluorinated alkyl aldimines,<sup>4</sup> it seems that the CF<sub>3</sub> group favors this aza-Diels–Alder cycloaddition reaction.<sup>11</sup> This could be explained by its electron-withdrawing character, which lowers the LUMO level of the molecule.<sup>11,12</sup> However, concomitantly the CF<sub>3</sub> group also significantly reduces the basicity of carbonyl and imine groups and hence the strength of complexation with a

Table 2.Syntheses of Tetrahydroquinoline Derivatives(5 mol % Yb(OTf)3)

| entry | 2         | t      | 3         | cis/trans | yield (%) <sup>a</sup> |
|-------|-----------|--------|-----------|-----------|------------------------|
| 1     | 2a        | 15 min | 3a        | >98/2     | 56                     |
| 2     | 2b        | 40 min | 3b        | >98/2     | 67                     |
| 3     | <b>2c</b> | 30 min | <b>3c</b> | 70/30     | 74                     |
| 4     | 2d        | 6 h    | 3d        | 70/30     | 87                     |
| 0 T 1 |           |        |           |           |                        |

<sup>a</sup> Isolated yield.

Lewis acid. This suggests that with the imine **1** a concerted mechanism rather than a two-step electrophilic process is favored. This could also explain the high stereoselectivity of the reaction; stabilizing secondary orbital interactions between the alkoxy group and the heterodiene in the six-membered ring transition state favor an endo approach of enol ethers as usually observed in Diels-Alder reaction.<sup>13</sup> This high stereoselectivity is not observed with nonfluorinated aldimines, when a twostep process is generally postulated.<sup>10c,14</sup> In the peculiar case of cyclic enol ethers, steric hindrance due to methylene groups could oppose these stabilizing orbital interactions. Despite this activating effect of the CF<sub>3</sub> group, the presence of Lewis acid is required for the success of the reaction. We observed that without Lewis acid, no reaction occurred even under heating.

**Reaction with Other Dienophiles.** We then explored this reaction with terminal vinylsulfide and with other unsaturated compounds that are expected to be less reactive in this reaction: enamide, vinylcarbamate, and styrene (Table 3).

Reactions were performed under the same conditions as for enol ethers under BF<sub>3</sub>·Et<sub>2</sub>O catalysis. The vinyl sulfide **2e** was a good heterodienophile in this [4 + 2]cycloaddition reaction, which led to the tetrahydroquinoline 3e in 86% yield. With the enamide 2f and the vinylcarbamate 2g,<sup>15</sup> which are less electron-rich, reaction required a higher temperature (-20 °C) and tetrahydroquinolines **3f** and **3g** were also obtained in good yields, 70% and 82%, respectively. Even styrene smoothly reacted with imine 1 to afford the corresponding tetrahydroquinoline **3h** in high yield. In all cases, only one regioand stereoisomer was obtained. The *cis* configuration between substituents was determined by measurement of H-H coupling constants in NMR spectra. These results seem to confirm a concerted process previously postulated.

When Yb(OTf)<sub>3</sub> was used as catalyst, the reaction was successful with **2e** and led selectively to the tetrahydroquinoline **3e** in 84% yield (*cis/trans*: >98/2). However, with less electron-rich **2f**, **2g**, and **2h**, no reaction was observed. Starting material was recovered.

**Reaction with Dienes.** CF<sub>3</sub>-*N*-tosyl-imines are known to react as dienophiles with dienes.<sup>16</sup> We have thus investigated the reactivity of the imine **1** toward dienes.

At first, the reaction was performed between imine **1** and cyclopentadiene under  $BF_3 \cdot Et_2O$  or  $Yb(OTf)_3$  catalysis (Scheme 3).

<sup>(11)</sup> Bonnet-Delpon, D.; Bégué, J. P.; Lequeux, T.; Ourévitch, M., *Tetrahedron* **1996**, *52*, 59–70.

<sup>(12) (</sup>a) Linderman, R. J.; Jamois, E. A. J. Fluorine Chem. 1991, 53, 79–91. (b) Mikami, K.; Yajima, T.; Terada, M.; Uchimaru, T. Tetrahedron Lett. 1993, 34, 7591–7594. (c) Drumond, D. F.; McMahon, T. B. J. Phys. Chem. 1981, 85, 3746–3748.

<sup>(13)</sup> Fukui, K., Acc. Chem. Res 1971, 4, 57.

<sup>(14) (</sup>a) Lucchini, V.; Prato, M.; Scorrano, G.; Tecilla, P. J. Org. Chem. 1988, 53, 2251–2258. (b) Lucchini, V.; Prato, M.; Scorrano, G.; Stivanello, M.; Valle, G. J. Chem. Soc., Perkin Trans. 2 1992, 259– 266. (c) Cheng, Y.-S.; Ho, E.; Mariano, P. S.; Ammon, H. L. J. Org. Chem. 1985, 50, 5678–5686.

<sup>(15)</sup> Wieber, G. M.; Hegedus, L. S.; Åkermark, B.; Michalson, E. T. *J. Org. Chem.* **1989**, *54*, 4649–4653.

<sup>(16)</sup> Krow, G. R.; Pyun, C.; Rodebaugh, R.; Marakowski, J. Tetrahedron 1974, 30, 2977.

| Entry | 2                                             | t  | 3                                              | cis/trans | Yield            |
|-------|-----------------------------------------------|----|------------------------------------------------|-----------|------------------|
|       |                                               |    |                                                |           | (%) <sup>a</sup> |
| 1     | SPh<br>2e                                     | 2h | CF <sub>3</sub><br>HN<br>SPh<br>OMe 3e         | >98/2     | 86               |
| 2     | N<br>2f                                       | 1h | CF <sub>3</sub><br>HN<br>N<br>N<br>N<br>OMe 3f | >98/2     | 70 <sup>b</sup>  |
| 3     | ∕∕N <sup>-CO</sup> 2 <sup>Bn</sup><br>H<br>2g | 1h | CF <sub>3</sub><br>HN<br>HN<br>H<br>OMe 3g     | >98/2     | 82 <sup>b</sup>  |
| 4     | Ph<br>2h                                      | 1h | CF <sub>3</sub><br>HN<br>Ph<br>OMe 3h          | >98/2     | 90 <sup>6</sup>  |

 Table 3. Syntheses of Tetrahydroquinoline Derivatives

 (10 mol % BF<sub>3</sub>·Et<sub>2</sub>O)

<sup>a</sup> Isolated yield. <sup>b</sup>-78 to -20 °C.





The use of BF<sub>3</sub>·Et<sub>2</sub>O (1 equiv or 10 mol %) afforded the tetrahydroquinoline **5** in a trace amount, and no other cycloadduct was obtained. In the presence of Yb(OTf)<sub>3</sub> (5 mol %), compound **5** (*cis* configuration) could be isolated at room temperature in a 56% yield. In this reaction, the imine **1** acted as an azadiene and reacted with one of the double bonds of cyclopentadiene. The striking efficiency of Yb(OTf)<sub>3</sub> compared to that of BF<sub>3</sub>·Et<sub>2</sub>O has not been elucidated. Examples of an aza-Diels–Alder reaction in which cyclopentadiene acts as dienophile have been reported with InCl<sub>3</sub>.<sup>17</sup>

Conversely, when the imine **1** was treated with 1-methoxy-3-(trimethylsiloxy)buta-1,3-diene (Danishefsky's diene) in the presence of 1 equiv of  $BF_3 \cdot Et_2O$  or 5 mol % of Yb(OTf)<sub>3</sub>, it reacted as a dienophile and afforded smoothly the corresponding tetrahydropyridine **6** as the sole re-



gioisomer (Scheme 4). This type of cycloaddition with Danishefsky's diene had already been reported in cycloaddition reaction with the  $CF_2H$  parent of the imine 1.<sup>18</sup>

**Preparation of Quinolines.** Because of their potential biological activity, considerable interest has been directed toward the synthesis of fluorinated quinolines,<sup>19</sup> e.g., mefloquine has been developed as a highly effective antimalarial drug.<sup>20</sup> We thus studied the conversion of tetrahydroquinolines, stemming from vinyl ethers, into quinolines. Under acidic conditions (2 N HCl in MeCN),<sup>10a</sup> **3a** and **3b** provided the quinoline **7** in 56% and 76%, respectively (Scheme 5).

With the tetrahydroquinolines 3c and 3d, quinolines 8 (51%) and 9 (70%), with a functionalized substituent in C-3, could be obtained (Scheme 6).

In conclusion, we have reported a route to new  $CF_3$ substituted tetrahydroquinolines and quinolines. We have shown that the imine **1** exhibits a high reactivity in aza-Diels–Alder reactions catalyzed by Lewis acids  $(BF_3 \cdot Et_2O, Yb(OTf)_3)$ . With substituted olefins, **1** acts as heterodiene involving the unsaturation of the aryl group. Tetrahydroquinolines are obtained in good yields with electron-rich and electron-poor olefins. Unlike what was

<sup>(17) (</sup>a) Babu, G.; Perumal, P. T. *Tetrahedron Lett.* **1997**, *38*, 5025–5026. (b) Babu, G.; Perumal, P. T. *Tetrahedron* **1998**, *54*, 1627–1638.

<sup>(18)</sup> Kitazume, T.; Murata, K.; Okabe, A.; Takahashi, Y.; Yamazaki, T. *Tetrahedron: Asymmetry* **1994**, *5*, 1029–1040.

<sup>(19) (</sup>a) Dey, A. S.; Jouillié, M. M. J. Heterocycl. Chem. 1965, 2, 113.
(b) Linderman, R. J.; Kirollos, K. S. Tetrahedron Lett. 1990, 31, 2689.
(c) Froissard, J.; Greiner, R.; Pastor, R.; Cambon, A. J. Fluorine Chem. 1981, 17, 249. (d) Keller, H.; Schlosser, M. Tetrahedron 1996, 52, 4637–4644. (e) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Eur. J. Org. Chem. 1999, 937–941.

<sup>(20)</sup> Ohnmatch, C. J.; Patel, A. R.; Lutz, R. E. J. Med. Chem. 1971, 14, 926–928.

observed in nonfluorinated series, the reaction is highly stereoselective, strongly suggesting a concerted process. With dienes, **1** reacts either as heterodiene or as dienophile depending on the structure of the diene.  $CF_3$ substituted tetrahydroquinolines could be converted in acidic medium into corresponding quinolines. These compounds are under biological assays for potential antiparasitic activity.

## **Experimental Section**

Structures of compounds were determinated by COSY, hmqc, and hmbc experiments and by NOE measurements. Elemental analyses were performed by the Service de Microanalyses of the Centre d'Etudes Pharmaceutiques, Châtenay-Malabry. All reactions were performed in an oven-dried apparatus under an inert atmosphere of argon.

Typical Procedure for the Synthesis of Substituted Tetrahydroquinolines. With BF<sub>3</sub>·Et<sub>2</sub>O. To a solution of 1 (306 mg, 1.5 mmol) in dry toluene (5 mL) was added, at -78 °C, BF<sub>3</sub>·Et<sub>2</sub>O (0.02 mL, 0.15 mmol). After the mixture stirred for 10 min, **2a** (166 mg, 2.26 mmol) in dry toluene (1 mL) was added. The reaction mixture was stirred for 20 min, then saturated aqueous NaHCO<sub>3</sub> (10 mL) was added, and the product was extracted with ether (3 × 10 mL). After the usual workup, chromatography on silica gel (petroleum ether/ethyl acetate, 20%) afforded 232 mg (56%) of **3a**.

**With Yb(OTf)**<sub>3</sub>. To a solution of Yb(OTf)<sub>3</sub> (31 mg, 0.05 mmol) in MeCN (1 mL) was added imine **1** (203 mg, 1.0 mmol) and **2a** (0.108 mg, 1.5 mmol) in MeCN (1.5 mL) at room temperature. The reaction mixture was stirred for 15 min, then a saturated aqueous NaHCO<sub>3</sub> solution (10 mL) was added, and the product was extracted with ether (10 mL  $\times$  3). After usual workup, chromatography on silica gel afforded 154 mg (56%) of **3a**.

**4-Ethoxy-6-methoxy-2-trifluoromethyl-1,2,3,4-tetrahydroquinoline (3a).** Mp: 99 °C (petroleum ether); white solid. <sup>1</sup>H NMR:  $\delta$  1.31 (t, *CH<sub>3</sub>*, *J* = 7.0 Hz, 3H); 1.97 (ddd, H-3ax, *J* = 12.1, 11.6, 10.7 Hz, 1H); 2.48 (ddd, H-3eq, *J* = 12.2, 5.5, 2.2 Hz, 1H); 3.60 (qd, 1H, O*CH*<sub>2</sub>CH<sub>3</sub>, *J* = 9.0, 7.0 Hz); 3.70 (s, NH, 1H); 3.76 (s, O*CH*<sub>3</sub>, 3H); 3.77 (qd, O*CH*<sub>2</sub>CH<sub>3</sub>, *J* = 9.0, 7.0 Hz, 1H); 3.91 (dqd, H-2, *J* = 11.6, 6.9, 3.2 Hz, 1H); 4.66 (dd, H-4, *J* = 10.7, 5.5 Hz, 1H); 6.55 (d, H-8, *J* = 8.8 Hz, 1H); 6.70 (dd, H-7, *J* = 8.8, 2.2 Hz, 1H); 6.96 (d, H-5, *J* = 2.9 Hz, 1H). <sup>13</sup>C NMR:  $\delta$ 15.5, 27.3, 53.2 (q, <sup>2</sup>*J*<sub>C-F</sub> = 30 Hz), 55.7, 64.0, 72.3, 111.8, 115.0, 116.3, 124.3, 125.5 (q, <sup>1</sup>*J*<sub>C-F</sub> = 278 Hz), 135.8, 153.3. <sup>19</sup>F NMR:  $\delta$  -78.4 (d, *J* = 6.9 Hz). Anal. Calcd for C<sub>13</sub>H<sub>16</sub>O<sub>2</sub>NF<sub>3</sub>: C, 56.72; H, 5.85; N, 5.08. Found: C, 56.58; H, 6.01; N, 4.95.

**4-Butyl-6-methoxy- 2-trifluoromethyl-1,2,3,4-tetrahy-droquinoline (3b).** Mp: 85 °C (petroleum ether); white solid. <sup>1</sup>H NMR:  $\delta$  0.96 (t,  $CH_3$ , J = 7.3 Hz, 3H); 1.47–1.66 (m,  $CH_2CH_2$ : CH<sub>3</sub>, 4H); 1.95 (dt, H-3ax, J = 12.0, 10.7 Hz, 1H); 2.49 (ddd, H-3eq, J = 12.2, 5.4, 3.2 Hz, 1H); 3.54 (dt,  $OCH_2$ , J = 9.0, 6.6 Hz, 1H); 3.70 (s, NH, 1H); 3.72 (dt,  $OCH_2$ , J = 9.0, 6.6 Hz, 1H); 3.75 (s,  $OCH_3$ , 3H); 3.91 (dqd, H-2, J = 11.7, 6.5, 3.2 Hz, 1H); 4.64 (dd, H-4, J = 11.6, 6.6, 3.2 Hz, 1H); 6.55 (d, H-8, J = 8.6 Hz, 1H); 6.69 (dd, H-7, J = 8.6, 2.9 Hz, 1H); 6.96 (d, H-5, J = 2.9 Hz, 1H): <sup>13</sup>C NMR:  $\delta$  13.9, 19.5, 27.2, 32.2, 53.3 (q,  $^2J_{C-F} = 2.9$  Hz, 1H). <sup>13</sup>C NMR:  $\delta$  153.2. <sup>19</sup>F NMR:  $\delta$  -78.4 (d, J = 6.5 Hz). Anal. Calcd for C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>NF<sub>3</sub>: C, 59.25; H, 6.64; N, 4.61. Found: C, 59.25; H, 6.82; N, 4.50.

**8-Methoxy-4-trifluoromethyl-2,3,3a,4,5,9b-hexahydrofuro**[**3**,2-*c*]**quinoline (3c).** *cis*-**3c.** Mp: 154 °C (petroleum ether); white solid. <sup>1</sup>H NMR: δ 1.99 (m, H-3, 1H); 2.22 (m, H-3, 1H); 2.84 (m, H-3a, 1H); 3.67 (s, NH, 1H); 3.75 (s, OCH<sub>3</sub>, 3H); 3.81 (td, H-2, J = 9.0, 4.0 Hz, 1H); 3.87 (td, H-2, J = 8.0, 7.4 Hz, 1H); 4.01 (qdd, H-4, J = 7.0, 2.4, 1.5 Hz, 1H); 5.2 (d, H-9b, J = 7.5 Hz, 1H); 6.58 (d, H-6, J = 9.0 Hz, 1H); 6.72 (dd, H-7, J = 9.0, 2.9 Hz, 1H); 6.89 (d, H-9, J = 3.0 Hz, 1H). <sup>13</sup>C NMR: δ 24.1, 37.2, 54.7 (q, <sup>2</sup>J<sub>C-F</sub> = 29.4 Hz), 55.6, 66.8, 75.3, 113.1, 116.1, 116.7, 123.1, 125.3 (q, <sup>1</sup>J<sub>C-F</sub> = 278.2 Hz), 135.8, 153.9. <sup>19</sup>F NMR: δ -76.1 (d, J = 7.0 Hz). Anal. Calcd for C<sub>13</sub>H<sub>1</sub>40<sub>2</sub>NF<sub>3</sub>: C, 57.09; H, 5.16; N, 5.12. Found: C, 56.89; H, 5.28; N, 4.98.

*trans*-3c. Mp: 98 °C (petroleum ether); white solid. <sup>1</sup>H NMR:  $\delta$  2.12 (dq, H-3, J = 13.0, 7.0 Hz, 1H); 2.27 (dtd, H-3, J = 13.0,

8.0, 5.0 Hz, 1H); 2.7 (dq, H-3a J = 8.3, 6.6 Hz, 1H); 3.56 (qd, H-4, J = 7.0, 6.6 Hz, 1H); 3.75 (s,  $OCH_3$ , 3H); 3.85 (td, H-2, J = 8.0, 7.2 Hz, 1H); 3.93 (td, H-2, J = 8.5, 5.0 Hz, 1H); 3.95 (s, NH, 1H); 4.77 (d, H-9b, J = 6.5 Hz, 1H); 6.58 (d, H-6, J = 9.0 Hz, 1H); 6.74 (dd, H-7, J = 9.0, 3.0 Hz, 1H); 6.9 (d, H-9, J = 2.9 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  29.2, 35.9, 54.8 (q,  ${}^{2}J_{C-F} = 28$  Hz), 55.7, 65.6, 73.9, 113.5, 116.4, 115.8, 121.0, 125.5 (q,  ${}^{1}J_{C-F} = 278$  Hz), 135.0, 19F NMR:  $\delta$  -75.9 (d, J = 7.0 Hz). Anal. Calcd for C<sub>13</sub>H<sub>14</sub>O<sub>2</sub>NF<sub>3</sub>: C, 57.09; H, 5.16; N, 5.12. Found: C, 56.97; H, 5.24; N, 5.04.

**9-Methoxy-5-trifluoromethyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano[3,2-c]quinoline (3d).** *cis*-3d. Mp: 164 °C (petroleum ether/ether: 30%); white solid. <sup>1</sup>H NMR:  $\delta$  1.52–1.85 (m, H-3, H-4, 4H); 2.46 (m, H-4a, 1H); 3.44 (td, H-2ax, J = 12.0, 2.2Hz, 1H); 3.62 (ddt, H-2eq, J = 11.5, 4.4, 1.6 Hz, 1H), 3.74 (s, NH, 1H); 3.76 (s, O*CH*<sub>3</sub>, 3H); 3.87 (qd, H-5, J = 7.4, 2.3 Hz, 1H); 5.09 (d, H-10b, J = 5.5 Hz, 1H); 6.6 (d, H-7, J = 8.7 Hz, 1H); 6.73 (dd, H-8, J = 8.7, 2.8 Hz, 1H); 6.98 (d, H-10, J = 2.9 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  18.6, 24.7, 32.0, 55.7, 57.1 (q, <sup>2</sup> $J_{C-F} = 29.6$  Hz), 60.6, 71.1, 111.6, 115.3, 116.8, 121.6, 125.3 (q, <sup>1</sup> $J_{C-F} = 280.4$ Hz), 136.6, 153.8. <sup>19</sup>F NMR:  $\delta$  –74.1 (d, J = 7.5 Hz). Anal. Calcd for C<sub>14</sub>H<sub>16</sub>O<sub>2</sub>NF<sub>3</sub>: C, 58.52; H, 5.62; N, 4.88. Found: C, 58.66; H, 5.80; N, 4.79.

*trans*-3d. Mp: 106 °C (petroleum ether/ether, 30%); white solid. <sup>1</sup>H NMR:  $\delta$  1.6–1.9 (m, H-3, H-4, 4H); 2.28 (m, H-4a, 1H); 3.75 (s × 2, OCH<sub>3</sub> and NH, 4H); 3.80 (m, H-2, 2H); 3.90 (qd, H-5, J = 6.8, 6.6 Hz, 1H); 4.6 (br, H-10b, 1H); 6.56 (d, H-7, J = 8.6 Hz, 1H); 6.74 (dd, H-8, J = 8.6, 2.9 Hz, 1H); 6.85 (d, H-10, J = 2.9 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  23.3, 24.6, 31.8, 54.4 (q, <sup>2</sup>J<sub>C-F</sub> = 29.4 Hz), 55.8, 65.4, 72.0, 110.3, 113.3, 115.8, 120.4, 125.0 (q, <sup>1</sup>J<sub>C-F</sub> = 280.2 Hz), 135.9, 152.9. <sup>19</sup>F NMR:  $\delta$  –75.6 (d, J = 6.8 Hz). Anal. Calcd for C<sub>14</sub>H<sub>16</sub>O<sub>2</sub>NF<sub>3</sub>: C, 58.52; H, 5.62; N, 4.88. Found: C, 58.52; H, 5.73; N, 4.80.

**6-Methoxy-4-thiophenyl-2-trifluoromethyl-1,2,3,4-tetrahydroquinoline (3e).** Mp: 112 °C (petroleum ether/ether, 30%); yellow solid. <sup>1</sup>H NMR:  $\delta$  2.15 (td, H-3, J = 12.9, 11.5 Hz, 1H); 2.46 (ddd, H-3, J = 13.0, 5.7, 3.0 Hz, 1H); 3.75 (s, OCH<sub>3</sub>, 3H); 3.80 (s, NH, 1H); 3.82 (m, H-2, 1H); 4.46 (dd, H-4, J = 11.5, 5.7 Hz, 1H); 6.57 (d, H-8, J = 8.7 Hz, 1H); 6.71 (dd, H-7, J =8.7, 2.3 Hz, 1H); 7.25–7.33 (m, H-5 and *Ph*, 4H); 7.44 (m, *Ph*, 2H). <sup>13</sup>C NMR:  $\delta$  30.2, 44.1, 54.1 (q, <sup>2</sup> $J_{C-F} = 30.2$  Hz), 55.8, 113.7, 115.3, 116.9, 122.2, 127.7, 129.2, 130.8 (q, <sup>1</sup> $J_{C-F} = 300$  Hz), 132.5, 136.5, 153.2, 175.8. <sup>19</sup>F NMR:  $\delta$  –79.1 (d, J = 6.4 Hz). Anal. Calcd for C<sub>17</sub>H<sub>16</sub>ONSF<sub>3</sub>: C, 60.16; H, 4.76; N, 4.13. Found: C, 60.14; H, 4.86; N, 4.05.

**6-Methoxy-4-pyrrolidin-(2'-one)-2-trifluoromethyl-1,2,3,4-tetrahydroquinoline (3f).** Mp: 178 °C (petroleum ether/AcOEt, 20%); white solid. <sup>1</sup>H NMR:  $\delta$  1.94–2.26 (m, H-3 and *CH*<sub>2</sub>CH<sub>2</sub>-CO, 4H); 2.50 (m, *CH*<sub>2</sub>CO, 2H); 3.22 (m, *CH*<sub>2</sub>N, 2H); 3.71 (s, O*CH*<sub>3</sub>, 3H); 3.82 (s, NH, 1H); 3.98 (m, H-2, 1H); 5.60 (dd, H-4, J = 11.6, 6.0 Hz, 1H); 6.42 (d, H-5, J = 2.5 Hz, 1H); 6.61 (d, H-8, J = 8.7 Hz, 1H); 6.71 (dd, H-7, J = 8.9, 2.7 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  18.1, 25.0, 31.1, 42.1, 46.7, 53.6 (q, <sup>2</sup>J<sub>C-F</sub> = 30.6 Hz), 55.6, 111.6, 114.5, 117.1, 120.3, 125.0 (q, <sup>1</sup>J<sub>C-F</sub> = 279.3 Hz), 137.1, 153.3, 175.8 <sup>19</sup>F NMR:  $\delta$  –78.7 (d, J = 5.7 Hz). Anal. Calcd for C<sub>15</sub>H<sub>17</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>: C, 57.32; H, 5.45; N, 8.91. Found: C, 57.10; H, 5.31; N, 8.70.

**6-Methoxy-4-carbamic Acid Benzyl Ester-2-trifluoromethyl-1,2,3,4-tetrahydroquinoline (3g).** Mp: 148 °C (petroleum ether/AcOEt, 20%); white solid. <sup>1</sup>H NMR:  $\delta$  1.87 (dt, H-3ax, J = 12.6, 11.0 Hz, 1H); 2.52 (ddd, H-3eq, J = 12.7, 5.6, 3.2 Hz, 1H); 3.76 (s, NH, 1H); 3.7 (s, O*CH*<sub>3</sub>, 3H); 3.95 (dqd, H-2, J =13.2, 6.5, 3.2 Hz, 1H); 4.97 (d, NH, J = 9.3 Hz, 1H); 5.07 (dt, H-4, J = 10.3, 5.6 Hz, 1H); 5.18 (s, O*CH*<sub>2</sub>Ph, 2H); 6.56 (d, H-8, J = 8.7 Hz, 1H); 6.70 (dd, H-7, J = 8.6, 3.0 Hz, 1H); 6.75 (d, H-5, J = 3.2 Hz, 1H); 7.38 (m, *Ph*, 5H). <sup>13</sup>C NMR:  $\delta$  29.0, 46.7, 53.1 (q, <sup>2</sup> $J_{C-F} = 280$  Hz), 128.1, 128.2, 128.5, 136.1, 136.2, 153.2, 156.2. <sup>19</sup>F NMR:  $\delta$  -78.2 (d, J = 6.6 Hz). Anal. Calcd for C<sub>19</sub>H<sub>19</sub>O<sub>3</sub>N<sub>2</sub>F<sub>3</sub>: C, 59.97; H, 5.04; N, 7.37. Found: C, 59.97; H, 5.07; N, 7.32.

**6-Methoxy-4-phenyl-2-trifluoromethyl-1,2,3,4-tetrahydroquinoline (3h).** Mp: 160 °C (petroleum ether); white solid. <sup>1</sup>H NMR:  $\delta$  2.16 (td, H-3ax, J = 12.7, 12.0 Hz, 1H); 2.38 (ddd, H-3eq, J = 12.7, 5.3, 3.1 Hz, 1H); 3.57 (s, OCH<sub>3</sub>, 3H); 3.9 (s, NH, 1H), 4.02 (m, H-2, 1H); 4.13 (dd, H-4, J = 12.6, 5.1 Hz, 1H); 6.18 (m, H-8, 1H); 6.63 (m, H-5, H-7, 2H); 7.18–7.4 (m, *Ph*, 5H).  $^{13}\text{C}$  NMR:  $\delta$  31.4, 43.0, 54.4 (q,  $^2J_{\text{C}-\text{F}}$  = 30 Hz), 55.6, 113.5, 115.0, 116.2, 125.3 (q,  $^1J_{\text{C}-\text{F}}$  = 278 Hz), 126.3, 127.1, 128.7, 128.8, 136.6, 143.7, 152.9.  $^{19}\text{F}$  NMR:  $\delta$  -78.7 (d, J = 6.7 Hz). Anal. Calcd for C17H16ONF3: C, 66.43; H, 5.26; N, 4.56. Found: C, 66.44; H, 5.37; N, 4.50.

**8-Methoxy-4-trifluoromethyl-3a,4,5,9b-tetrahydro-3***H***-<b>cyclopenta[c]quinoline (5).** Mp: 123 °C (petroleum ether/ ether, 30%); brown solid. <sup>1</sup>H NMR:  $\delta$  2.33 (ddd, H-3, J = 16.5, 9.0, 2.8, 1H); 2.72 (dd, H-3, J = 16.5, 8.7 Hz, 1H); 3.00 (qd, H-3a, J = 9.0, 2.9 Hz, 1H); 3.59 (s, NH, 1H); 3.74 (s, O*CH*<sub>3</sub>, 3H); 3.93 (qd, H-4, J = 7.5, 3.0 Hz, 1H); 4.01 (d, H-9b, J = 9.0 Hz, 1H); 5.76 (dtd, H-2, J = 5.8, 2.9, 1.3 Hz, 1H); 5.88 (ddt, H-1, J = 5.9, 2.9, 1.3 Hz, 1H); 6.60 (m, H-6, H-7, H-9, 3H). <sup>13</sup>C NMR:  $\delta$  31.2, 38.0, 46.2, 55.6, 55.8 (q, <sup>2</sup> $J_{C-F} = 29$  Hz), 112.8, 113.8, 117.5, 125.7 (q, <sup>1</sup> $J_{C-F} = 279.5$  Hz), 126.4, 131.0, 132.7, 136.3, 153.7. <sup>19</sup>F NMR:  $\delta$  -74.6 (d, J = 7.5 Hz). Anal. Calcd for C<sub>14</sub>H<sub>14</sub>ONF<sub>3</sub>: C, 62.44; H, 5.24; N, 5.20. Found: C, 62.46; H, 5.37; N, 5.08.

**2-Trifluoromethyl-1**-*p*-methoxyphenyl-2,3-dihydro-1*H*-pyridin-4-one (6). To a solution of imine 1 (203 mg, 1.0 mmol) and BF<sub>3</sub>·Et<sub>2</sub>O (1.0 mmol, 0.12 mL) in THF (8 mL) was added at -78 °C 2-[(trimethylsilyl)oxy]-1,3-butadiene (258 mg, 1.5 mmol). After 7 h of stirring, the reaction mixture was quenched with water (15 mL) and extracted with ether (3 × 10 mL). The extracts were dried over anhydrous MgSO<sub>4</sub> and concentrated. Flash chromatography gave **6** (176 mg, 65%) as a brown oil. <sup>1</sup>H NMR:  $\delta$  2.77 (d, H-3, J = 17.4 Hz, 1H); 3.14 (dd, H-3, J = 17.4, 7.5 Hz, 1H); 3.82 (s, OCH<sub>3</sub>, 3H); 4.48 (quint, H-2, J = 7.5 Hz, 1H); 5.22 (d, H-5, J = 8.1 Hz, 1H); 6.92 (m, *Ph*, 2H); 7.14 (m, *Ph*, 2H); 7.26 (d, H-6, J = 8.1 Hz, 1H). <sup>13</sup>C:  $\delta$  34.4, 55.4, 59.8 (q,  ${}^{2}J_{C-F} = 29.2$  Hz), 101.4, 114.9, 123.5, 125.9 (q,  ${}^{1}J_{C-F} = 286.4$  Hz), 138.1, 149.8, 157.8, 188.2. <sup>19</sup>F NMR:  $\delta$  -72.7 (d, J = 7.5 Hz). Anal. Calcd for C<sub>13</sub>H<sub>12</sub>O<sub>2</sub>NF<sub>3</sub>: C, 57.56; H, 4.46; N, 5.16. Found: C, 57.62; H, 4.60; N, 5.21.

General Procedure for the Synthesis of Substituted Quinolines. Tetrahydroquinoline (0.9 mmol) (3a-d) was added to a solution of 2 N HCl (2 mL) in acetonitrile, and the mixture was stirred at room temperature or at reflux. The reaction was followed by GC and TLC. The mixture was quenched with a saturated solution of Na<sub>2</sub>CO<sub>3</sub> and washed with water and brine. The organic layer was dried over  $MgSO_4$  and concentrated in vacuo. The residue was chromatographed on silica gel (petroleum ether/AcOEt, 40%) to give analytically pure quinoline derivatives 7-9.

**6-Methoxy-2-trifluoromethyl-quinoline (7).** Mp: 59 °C (petroleum ether) (lit.<sup>19d</sup> 54.5–57 °C), colorless solid. <sup>1</sup>H NMR:  $\delta$  3.95 (s, 3H, O*CH*<sub>3</sub>); 7.11 (d, H-5, J = 2.7 Hz, 1H); 7.45 (dd, H-7, J = 9.3, 2.7 Hz, 1H); 7.68 (d, H-8, J = 8.6 Hz, 1H); 8.1 (d, H-4, J = 9.3 Hz, 1H); 8.21 (d, H-3, J = 8.6 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  55.6, 104.7, 117.1, 121.8 (q, <sup>1</sup>*J*<sub>C</sub>-<sub>F</sub> = 280 Hz), 124.0, 130.3, 131.5, 136.4, 143.3, 145.1, 159.3. <sup>19</sup>F NMR: -67.4 (s). Anal. Calcd for C<sub>11</sub>H<sub>8</sub>ONF<sub>3</sub>: C, 58.10; H, 3.52; N, 6.16. Found: C, 57.98; H, 3.53; N, 6.09.

**3-(2'-Hydroxy)ethyl-2-trifluoromethyl-6-methoxy-quinoline (8).** Mp: 103 °C (petroleum ether/ether, 30%). <sup>1</sup>H NMR:  $\delta$ 1.80 (s, OH, 1H); 3.18 (t, H-2, J = 6.4 Hz, 2H); 3.93 (s, OCH<sub>3</sub>, 3H); 3.97 (t, H-1, J = 6.4 Hz, 2H); 7.04 (d, H-5, J = 2.7 Hz, 1H); 7.38 (dd, H-7, J = 9.2, 2.7 Hz, 1H); 8.03 (d, H-8, J = 9.2 Hz, 1H); 8.10 (s, H-4, 1H). <sup>13</sup>C NMR:  $\delta$  34.4, 55.6, 62.4, 104.1, 122.3 (q, <sup>1</sup> $J_{C-F} = 274$  Hz), 123.4, 129.3, 130.2, 131.1, 138.2, 141.2, 143.6 (q, <sup>2</sup> $J_{C-F} = 31.7$  Hz), 159.5. <sup>19</sup>F NMR:  $\delta$  -63.6 (s). Anal. Calcd for C<sub>13</sub>H<sub>12</sub>O<sub>2</sub>NF<sub>3</sub>: C, 57.56; H, 4.46; N, 5.16. Found: C, 57.67; H, 4.40; N, 5.07.

**3-(3'-Hydroxy)propyl-2-trifluoromethyl-6-methoxy-quinoline (9).** Brown oil. <sup>1</sup>H NMR:  $\delta$  1.96 (m, H-2, 2H); 2.30 (s, OH, 1H); 3.01 (t, H-3, J = 7.5 Hz, 2H); 3.76 (t, H-1, J = 6.4 Hz, 2H); 3.91 (s, O*CH*<sub>3</sub>, 3H); 7.01 (d, H-5, J = 2.7 Hz, 1H); 7.35 (dd, H-7, J = 9.3, 2.7 Hz, 1H); 8.00 (s, H-4, 1H); 8.02 (d, H-8, J = 9.3 Hz, 1H). <sup>13</sup>C NMR:  $\delta$  27.5, 33.8, 55.6, 61.9, 104.0, 122.4 (q, <sup>1</sup> $_{J_{C-F}}$  = 273.5 Hz), 123.2, 130.5, 131.1, 132.6, 137.1, 141.1, 143.6 (q, <sup>2</sup> $_{J_{C-F}}$  = 33.1 Hz), 159.4. <sup>19</sup>F NMR:  $\delta$  –63.8 (s). Anal. Calcd for C<sub>14</sub>H<sub>1</sub>Q<sub>2</sub>NF<sub>3</sub>: C, 58.94; H, 4.94; N, 4.91. Found: C, 59.20; H, 5.06; N, 5.12.

**Acknowledgment.** We thank the "Fondation pour la Recherche Médicale" for financial support and Dr. Maruta (Central Glass) for starting material.

JO9918807